Neuronal ERVK protein deposition in ALS: An aspect of TDP-43 misregulation

Mamneet (Sheena) Manghera
Supervisor: Dr. Renée Douville
Protein Quality Control mechanisms maintain cellular proteostasis

- Mammalian cells contain a large number of undesirable proteins
- Managed by PQC processes to alleviate the risk of proteotoxicity
- Cell-type specific differences in maintaining proteostasis
 - Neurons are the most vulnerable to aberrant protein deposition

Diagram:
- Ubiquitin proteasome system
- Autophagy system
- Stress granule response
When proteostasis goes bad: Protein aggregation in the cell

- Defective PQC pathways lead to protein deposition and aggregation
- Many pathogenic consequences of protein aggregates
- Protein aggregation is a hallmark of major neurodegenerative diseases
Protein aggregation in ALS: Pathological effects of TDP-43 aggregates

- Characterized by aggregation of cellular proteins in affected neurons
- TDP-43 is a major component of cytosolic protein aggregates
- Many pathological effects of cytosolic TDP-43 aggregation in ALS
A retroviral connection to ALS: Pathogenic deposition of neuronal ERVK proteins

- Active ERVK loci in the cortical neurons of patients with ALS produce retroviral reverse transcriptase (RT) enzyme (Douville et al., 2011)

- High levels of RT in the serum and CSF of patients with ALS (McCormick et al., 2008)

- Recapitulated in a murine model of ERVK Env-driven motor neuron damage (Li et al., 2015)
Drivers of neuronal ERVK protein deposition in ALS: Is TDP-43 misregulation involved?

Overexpression of TDP-43 correlates with enhanced ERVK pol RNA levels

TDP-43 and ERVK protein build-up in cortical neurons of patients with ALS

Does TDP-43 activate ERVK transcription?

Does TDP-43 impact ERVK proteostasis?

Douville et al., Ann Neurol, 2011
Drivers of neuronal ERVK protein deposition in ALS:
Are defective PQC pathways involved?

- Viral proteins can also be targeted by autophagy, UPS, and SGs
 - These pathways are disrupted in ALS

- Viruses can also interfere with and usurp cellular PQC strategies

Do PQC mechanisms homeostatically regulate ERVK proteostasis?

Cell-type specific differences in ERVK protein clearance?

Does ERVK interfere with cellular PQC mechanisms?
SPECIFIC AIMS

We sought to evaluate whether wild-type and TDP-43 mutants, as well as select protein clearance pathways, influence neuronal ERVK protein deposition in ALS

- Determine whether TDP-43 binds the ERVK promoter and activates ERVK transcription
- Evaluate cell-type specific differences in clearance of TDP-43 and ERVK protein deposits in human astrocytes and neurons
- Assess whether wild-type and mutated TDP-43 modulate ERVK protein deposition
- Validate findings in autopsy cortical brain tissue from neuro-normal controls and individuals with ALS
TDP-43 binds the ERVK promoter

- ERVK 5’ LTR contains multiple putative TDP-43 binding sites

- TDP-43 has been shown to bind the ERVK promoter and activate ERVK transcription (Li et al., 2015)
TDP-43 binds the ERVK promoter, but is not a transcriptional activator of ERVK

- **Cell lines:**
 - SVGAs: human astrocytic cell line
 - ReNcell CX-derived human neurons

- Overexpression of wild-type or ALS-associated mutant TDP-43 did not increase ERVK gene transcription

- Enhanced binding of TDP-43 to the ERVK promoter with MG132 treatment, and reduced binding with TNFα + MG 132 treatment did not alter ERVK gene transcription
Astrocytes can clear ERVK and TDP-43 protein deposits

- UPS maintains ERVK proteostasis, and inhibition of UPS leads to ERVK protein accumulation
- Astrocytes are able to degrade ERVK and TDP-43 protein deposition with TNFα treatment during MG132-mediated UPS inhibition
Neurons cannot effectively clear ERVK and TDP-43 protein accumulation

Unlike astrocytes, human neurons are unable to effectively degrade ERVK and TDP-43 protein deposition with dual TNFα and MG132 treatment.
Mutant TDP-43 facilitates ERVK protein deposition in astrocytes and neurons

Overexpression of ALS-associated mutant TDP-43 strongly drives ERVK protein aggregation in astrocytes

Manghera et al., Neurobio Dis, 2016
ERVK proteins localize to stress granules

- ERVK RT\(^+\) G3BP1\(^+\) stress granules form in cells treated with TNF\(\alpha\) and MG132
- Stress granule formation may regulate ERVK protein turnover

Manghera et al., Neurobio Dis, 2016
ERVK proteins also localize to autophagic vesicles

- ERVK RT localizes to LC 3B+ autophagic vesicles, but not to the same extent as with G3BP1
- Autophagy also likely regulates ERVK expression

Manghera et al., Neurobio Dis, 2016
Ongoing autophagy fails to clear neuronal ERVK protein accumulation in ALS

- LC 3B levels are markedly enhanced in ERVK RT⁺ cortical neurons from patients with ALS
- Incomplete co-localization of ERVK RT with LC 3B

Manghera et al., Neurobio Dis, 2016
Stress granule response fails to clear neuronal ERVK protein accumulation in ALS

- G3BP1 levels are markedly enhanced in ERVK RT⁺ cortical neurons from patients with ALS
- ERVK RT does not co-localize with G3BP1

Manghera et al., Neurobio Dis, 2016
SUMMARY

- G3BP1 Deregulation of stress granules
- LC3B
- TDP-43 promotes ERVK protein deposition
- RT
- Degradation of ERVK proteins
- Stress granule formation
- Axonal autophagy

Manghera et al., Neurobio Dis, 2016
ERVK protein deposition is a novel aspect of TDP-43 misregulation in ALS

Protein aggregation may serve as a new therapeutic target for ALS

How to prevent or dissolve protein aggregates?

Enhance activity of select cellular proteases?
ACKNOWLEDGEMENTS

Supervisor:
Dr. Renée N. Douville

The Douville Lab Team

NIH NeuroBioBank
VA Biorepository
Tissue donors

FGS Travel award
Sir Gordon Wu Scholarship

Chancellor’s Research Chair
Manitoba Graduate Scholarship

Canada Foundation for Innovation
Fondation canadienne pour l’innovation

Create a world without ALS.